Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract A measurement of the dijet production cross section is reported based on proton–proton collision data collected in 2016 at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ by the CMS experiment at the CERN LHC, corresponding to an integrated luminosity of up to 36.3$$\,\text {fb}^{-1}$$ . Jets are reconstructed with the anti-$$k_{\textrm{T}} $$ algorithm for distance parameters of$$R=0.4$$ and 0.8. Cross sections are measured double-differentially (2D) as a function of the largest absolute rapidity$$|y |_{\text {max}} $$ of the two jets with the highest transverse momenta$$p_{\textrm{T}}$$ and their invariant mass$$m_{1,2} $$ , and triple-differentially (3D) as a function of the rapidity separation$$y^{*} $$ , the total boost$$y_{\text {b}} $$ , and either$$m_{1,2} $$ or the average$$p_{\textrm{T}}$$ of the two jets. The cross sections are unfolded to correct for detector effects and are compared with fixed-order calculations derived at next-to-next-to-leading order in perturbative quantum chromodynamics. The impact of the measurements on the parton distribution functions and the strong coupling constant at the mass of the$${\text {Z}} $$ boson is investigated, yielding a value of$$\alpha _\textrm{S} (m_{{\text {Z}}}) =0.1179\pm 0.0019$$ .more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Abstract Using proton–proton collision data corresponding to an integrated luminosity of$$140\hbox { fb}^{-1}$$ collected by the CMS experiment at$$\sqrt{s}= 13\,\text {Te}\hspace{-.08em}\text {V} $$ , the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} $$ decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} $$ decay, is measured to be$$\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} )/\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} ) = [3.38\pm 1.02\pm 0.61\pm 0.03]\%$$ , where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in$$\mathcal {B}({{{\uppsi }} ({2\textrm{S}})} \rightarrow {{\text {J}/\uppsi }} {{{\uppi }} ^{{+}}} {{{\uppi }} ^{{-}}} )$$ and$$\mathcal {B}({{{\Xi }} ^{{-}}} \rightarrow {{\Lambda }} {{{\uppi }} ^{{-}}} )$$ .more » « less
- 
            The results of a search for stealth supersymmetry in final states with two photons and jets, targeting a phase space region with low missing transverse momentum ( ), are reported. The study is based on a sample of proton-proton collisions at collected by the CMS experiment, corresponding to an integrated luminosity of . As LHC results continue to constrain the parameter space of the minimal supersymmetric standard model, the low regime is increasingly valuable to explore. To estimate the backgrounds due to standard model processes in such events, we apply corrections derived from simulation to an estimate based on a control selection in data. The results are interpreted in the context of simplified stealth supersymmetry models with gluino and squark pair production. The observed data are consistent with the standard model predictions, and gluino (squark) masses of up to 2150 (1850) GeV are excluded at the 95% confidence level. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
- 
            Abstract The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton–proton collisions at a center-of-mass energy of 13$$\,\text {Te}\hspace{-.08em}\text {V}$$ . The analysis uses a data sample corresponding to a total integrated luminosity of 138$$\,\text {fb}^{-1}$$ collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The$$\hbox {W}+\hbox {c}$$ production cross section and the cross section ratio$$R_\textrm{c}^{\pm }= \sigma ({\hbox {W}}^{+}+\bar{\text {c}})/\sigma (\hbox {W}^{-}+{\textrm{c}})$$ are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in$$R_\textrm{c}^{\pm }= 0.950 \pm 0.005\,\text {(stat)} \pm 0.010 \,\text {(syst)} $$ . The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
